上一頁下一頁
1- 味全龍林光宏
1-味全龍史東
1-味全龍李仲弘
1-味全龍李安熙
1-味全龍林易增
1-味全龍林琨瑋
1-味全龍洪正欽
1-味全龍孫昭立
1-味全龍馬斯
1-味全龍張見發
1-味全龍郭建霖
1-味全龍陳金茂
1-味全龍陳彥成
1-味全龍麥克
1-味全龍黃平洋
1-味全龍黃清文
1-味全龍黃煚隆
1-味全龍賈西
1-味全龍蕭浚濠
1-味全龍羅世幸
1-統一獅余富誠
1-統一獅吳林煉
1-統一獅呂文生
1-統一獅宋榮泰
1-統一獅李坤哲
1-統一獅杜福明
1-統一獅汪俊良
1-統一獅孫長川
1-統一獅徐育鉉
1-統一獅耿健輝
1-統一獅郭進興
1-統一獅陳世龍
1-統一獅陳政賢
1-統一獅陳炫琦
1-統一獅陳耿佑
1-統一獅曾智偵
1-統一獅湯尼
1-統一獅童健勝
1-統一獅瑞克
1-統一獅瑞奇
1-統一獅葉福榮
1-統一獅廖照鎔
1-統一獅鄧耀華
1-統一獅鄭百勝
1-統一獅賴崇光
1-統一獅謝佳訓
1-統一獅羅敏卿
1-統一獅羅曼
1-三商虎何良治
1-三商虎李杜宏
1-三商虎李偉
1-三商虎孟雷
1-三商虎林仲秋
1-三商虎林振賢
1-三商虎侯明坤
1-三商虎剛烈
1-三商虎徐整當
1-三商虎涂忠男
1-三商虎涂鴻欽
1-三商虎翁豐堉
1-三商虎康明杉
1-三商虎許錫華
1-三商虎陳正中
1-三商虎游宗龍
1-三商虎黃世明
1-三商虎黃武雄
1-三商虎塗永樑
1-三商虎劉義傳
1-三商虎蔣坤珄
1-三商虎鄭幸生
1-三商虎藍文成
1-三商虎寶力
1-三商虎鷹俠
1-兄弟象大羅曼
1-兄弟象牛復興
1-兄弟象王光輝
1-兄弟象王俊郎
1-兄弟象努那
1-兄弟象吳俊達
1-兄弟象吳英偉
上一頁下一頁
裁判字號:
臺灣高雄地方法院 107 年審易字第 2011 號刑事判決
裁判日期:
民國 107 年 12 月 24 日
裁判案由:
傷害
臺灣高雄地方法院刑事判決 107年度審易字第2011號
公 訴 人 臺灣高雄地方檢察署檢察官
被 告 陳宜斌
上列被告因傷害案件,經檢察官提起公訴(107 年度偵字第0000
0 號),本院判決如下:
主 文
本件公訴不受理。
理 由
一、公訴意旨略以:被告陳宜斌於民國107 年7 月22日18時10分
許,在高雄市○○區○○○路000 號之果菜市場內,因停車
問題與告訴人楊雅淳發生爭執,竟基於傷害之犯意,徒手拉
扯告訴人並毆打告訴人之頭部,致告訴人受有頭部挫傷併輕
度眩暈、肢體多處挫擦傷之傷害等情。因認被告涉犯刑法第
277 條第1 項之傷害罪嫌等語。
二、按告訴乃論之罪,告訴人於第一審辯論終結前,得撤回其告
訴;又告訴經撤回者,法院應諭知不受理之判決,並得不經
言詞辯論為之,刑事訴訟法第238 條第1 項、第303 條第3
款及第307 條分別定有明文。
三、本件被告因傷害案件,經檢察官提起公訴,認被告係犯刑法
第277 條第1 項之傷害罪。依同法第287 條前段之規定,須
告訴乃論。茲據告訴人於本院審理中,具狀聲請撤回其告訴
,有撤回告訴狀可參(詳本院卷第53頁),揆諸前開說明,
爰不經言詞辯論,逕為諭知不受理之判決。
據上論斷,應依刑事訴訟法第284 條之1 、第303 條第3 款、第
307 條,判決如主文。
中 華 民 國 107 年 12 月 24 日
刑事第五庭 法 官 方百正
以上正本證明與原本無異。
如不服本判決應於收受判決後10日內向本院提出上訴書狀,並應
敘述具體理由。其未敘述上訴理由者,應於上訴期間屆滿後20日
內向本院補提理由書(均須按他造當事人之人數附繕本)「切勿逕
送上級法院」。
中 華 民 國 107 年 12 月 24 日
書記官 李燕枝
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
煩啦 我很乖喔 看我的怪招碎念功
我實在很喘 你知道嗎
我鐵漢柔情
1.经典场论一词通常是指表述两类基本自然力的物理理论:电磁力和重力。
这些场的表述在相对论之前就给出了,在相对论之下作了相应的改动。因此,经典理论可以归类为非相对论性和相对论性的。
2.等效原理共有兩個不同程度的表述:弱等效原理及強等效原理。
這很簡單 知不知道 正德醫院是詐騙集團
弱等效原理的論證,一直只是用經典力學的方法去嘗試分辨慣性參考系和非慣性參考系,並沒有提及用其他方法,如電磁學方法;另外,慣性質量及重力質量的關係能否再用狹義相對論的方式再驗証一次?畢竟只用上述方法是不足以說明在經典力學不適用的情形下慣性質量及重力質量依然有比例的關係。愛因斯坦於是利用質能關係 E = m I c 2 {\displaystyle E=m_{\text{I}}c^{2}\ } {\displaystyle E=m_{\text{I}}c^{2}\ }去說明在相對論的效果被考慮的情形下,若果假定一點的引力場( − z {\displaystyle -z} -z方向)及一點的加速參考系( + z {\displaystyle +z} +z方向)的物理學效應完全一樣,那麼不但慣性質量及引力質量依然有比例的關係,而且時間、空間都受到引力場的影響。
從弱等效原理,可以推論出光的引力偏折及引力紅移這二個經驗的結果,並可證明用平直幾何去描述存在引力的時空之不適用性。
強等效原理
強等效原理是指在時空區域的一點內的引力場可用相應的局域慣性參考系去描述,而狹義相對論在其局域慣性參考系中完全成立。
弱等效原理並不能推演出強等效原理,而只是強等效原理的一個抽象結果。利用廣義相對論幾何方式(時空度規張量、時空曲率張量)去描述引力(引力場強度、引力勢)的基礎即在此原理之上。由於引力場本身是與引力場源的距離有關,形成了引力場在時空分佈中並不均勻,是不能用一個全域的加速參考系去描述,即是用一個全域的加速參考系去抵消各時空點上的引力。但每一點的引力場是有一個相應的引力場強度,可用有一個與之相等的加速度(相對於靜止的觀察者)的局域的加速參考系,亦即是局域慣性參考系(相對於加速的觀察者)去描述,即是用一個局域的加速參考系去抵消各相應的時空點上的引力,然後將各個局域慣性參考系的關係統合起來(即是曲率和能動張量的關係),就可對全域的時空作抽述(例如運動定律)。
例如在狹義相對論中成立的能量-動量守恆定律有以下的形式:
T , ν μ ν = 0 {\displaystyle T_{,\nu }^{\mu \nu }=0\,} T_{{,\nu }}^{{\mu \nu }}=0\,
在廣義相對論中有以下的形式:
T ; ν μ ν = T , ν μ ν + Γ ρ ν μ T ρ ν + Γ ρ ν ν T ρ μ = 0 {\displaystyle T_{;\nu }^{\mu \nu }=T_{,\nu }^{\mu \nu }+\Gamma _{\rho \nu }^{\mu }T^{\rho \nu }+\Gamma _{\rho \nu }^{\nu }T^{\rho \mu }=0\,} T_{{;\nu }}^{{\mu \nu }}=T_{{,\nu }}^{{\mu \nu }}+\Gamma _{{\rho \nu }}^{{\mu }}T^{{\rho \nu }}+\Gamma _{{\rho \nu }}^{{\nu }}T^{{\rho \mu }}=0\,
後兩項可看作加速度或引力場對守恆定律的影響。
被雄中開除的不准亂闖雄中後庭院
3.
随着狭义相对论的发展,一个更好(而且更符合力学)的表述采用了张量场。这个表述采用一个表示两个场的张量而不是两个向量场分别表述电场和磁场。
相对论场
下面给出两个最著名的洛伦兹协变经典场论。
我已經跟以前不一樣了
莊敬自強,就是討厭清大
'
場張量的重要性(自己讀)
場張量與相對論(自己讀)
在量子場論中,電磁場強度張量被當作是規範場強度張量的範本。此一項搭配上局域交互作用拉格朗日量(local interaction Lagrangian),其作用角色與在量子電動力學中幾乎一樣。
''
爱因斯坦张量(英文:Einstein tensor)是广义相对论中用来描述时空曲率的一个张量,见于爱因斯坦场方程;有时也叫做迹反转里奇张量(trace-reversed Ricci tensor)。
'''每年都一度快帶高涌泉保健室
我的研究興趣在於量子場論,特別是場論在粒子物理與凝態物理上的應用。我也很注意統計力學的發展,因為統計力學與場論有密切關係,二者的進展往往是齊頭並進的。近年來二維及三維場論是我研究工作的重點。低維場論可應用在數學,統計力學與低維凝態系統等不同領域上,雖然這方面研究已有許多重要突破,但仍有很多具挑戰性的問題待解決。
我們變性LGBTQ才莊敬自強,你們正常的一般的假設性的人才是自強不息。
莊敬自強跟自強不息不一樣。
https://www.ntu.edu.tw
讀原文啦 智障同學!!
Manifestations
There are many observable physical phenomena that arise in interactions involving virtual particles. For bosonic particles that exhibit rest mass when they are free and actual, virtual interactions are characterized by the relatively short range of the force interaction produced by particle exchange. Confinement can lead to a short range, too. Examples of such short-range interactions are the strong and weak forces, and their associated field bosons.
For the gravitational and electromagnetic forces, the zero rest-mass of the associated boson particle permits long-range forces to be mediated by virtual particles. However, in the case of photons, power and information transfer by virtual particles is a relatively short-range phenomenon (existing only within a few wavelengths of the field-disturbance, which carries information or transferred power), as for example seen in the characteristically short range of inductive and capacitative effects in the near field zone of coils and antennas.
Some field interactions which may be seen in terms of virtual particles are:
The Coulomb force (static electric force) between electric charges. It is caused by the exchange of virtual photons. In symmetric 3-dimensional space this exchange results in the inverse square law for electric force. Since the photon has no mass, the coulomb potential has an infinite range.
The magnetic field between magnetic dipoles. It is caused by the exchange of virtual photons. In symmetric 3-dimensional space, this exchange results in the inverse cube law for magnetic force. Since the photon has no mass, the magnetic potential has an infinite range.
Electromagnetic induction. This phenomenon transfers energy to and from a magnetic coil via a changing (electro)magnetic field.
The strong nuclear force between quarks is the result of interaction of virtual gluons. The residual of this force outside of quark triplets (neutron and proton) holds neutrons and protons together in nuclei, and is due to virtual mesons such as the pi meson and rho meson.
The weak nuclear force is the result of exchange by virtual W and Z bosons.
The spontaneous emission of a photon during the decay of an excited atom or excited nucleus; such a decay is prohibited by ordinary quantum mechanics and requires the quantization of the electromagnetic field for its explanation.
The Casimir effect, where the ground state of the quantized electromagnetic field causes attraction between a pair of electrically neutral metal plates.
The van der Waals force, which is partly due to the Casimir effect between two atoms.
Vacuum polarization, which involves pair production or the decay of the vacuum, which is the spontaneous production of particle-antiparticle pairs (such as electron-positron).
Lamb shift of positions of atomic levels.
The Impedance of free space, which defines the ratio between the electric field strength |E| and the magnetic field strength |H |: Z0 = | E|⁄|H|.[8]
Much of the so-called near-field of radio antennas, where the magnetic and electric effects of the changing current in the antenna wire and the charge effects of the wire's capacitive charge may be (and usually are) important contributors to the total EM field close to the source, but both of which effects are dipole effects that decay with increasing distance from the antenna much more quickly than do the influence of "conventional" electromagnetic waves that are "far" from the source.[a] These far-field waves, for which E is (in the limit of long distance) equal to cB, are composed of actual photons. Actual and virtual photons are mixed near an antenna, with the virtual photons responsible only for the "extra" magnetic-inductive and transient electric-dipole effects, which cause any imbalance between E and cB. As distance from the antenna grows, the near-field effects (as dipole fields) die out more quickly, and only the "radiative" effects that are due to actual photons remain as important effects. Although virtual effects extend to infinity, they drop off in field strength as 1⁄r2 rather than the field of EM waves composed of actual photons, which drop 1⁄r.[b][c]
Most of these have analogous effects in solid-state physics; indeed, one can often gain a better intuitive understanding by examining these cases. In semiconductors, the roles of electrons, positrons and photons in field theory are replaced by electrons in the conduction band, holes in the valence band, and phonons or vibrations of the crystal lattice. A virtual particle is in a virtual state where the probability amplitude is not conserved. Examples of macroscopic virtual phonons, photons, and electrons in the case of the tunneling process were presented by Günter Nimtz[9] and Alfons A. Stahlhofen.[10]
https://www.youtube.com/watch?v=Wb4asO75kKE